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We found the interrelation between the constants that determine the components of heat balance in transition
of a material from the solid to liquid and gaseous states under the conditions of thermal destruction of the
material’s surface. It is shown that the relations between these constants satisfy the "golden proportion." An
energy diagram of thermal destruction of the material is suggested. The amount of heat necessary for estab-
lishment of the stationary mode of heating and mass entrainment is estimated.

At present, it is accepted the practice to consider four aggregate states of a substance, viz., solid, liquid, gas,
and plasma. In transition from one state to another a certain amount of thermal energy is absorbed or released, the
properties of the material change sharply, and, as a rule, the material cannot perform its functions. However, determi-
nation of the laws governing transition of the material from one aggregate state to another still remains a problem.

Mathematical models constructed to characterize such processes usually involve constants. In this case, equa-
tions describing different phenomena can have the same dimensional and dimensionless constants. Recently, much at-
tention has been paid to the Fibonacci number ϕ. The irrational number ϕ = 1.618034... is the limit to which the ratio
of the higher number in the Fibonacci sequence to the neighboring lower number tends. The farther along the se-
quence, the closer this ratio approaches ϕ [1]. The numbers 1.618 and 0.618 characterize the "golden proportion" or
the "golden section." It has been found that ratios close to the "golden proportion" are widely present in nature. Many
examples, starting from such small forms as atomic structures, microcapillaries of the brain, and DNA molecules to
such huge ones as planetary orbits and galaxies, show that most natural phenomena can actually be described by the
"golden proportion."

The use of the "golden proportion" makes it possible in some cases to predict new materials on the basis of
a purely geometric similarity of them [2]. However, this approach does not often allow an explanation of the appear-
ance of one property of the material or another. In our opinion, this is due to the fact that comprehension of the
physical essence of the studied phenomena is being lost. All physical processes, including those in transition of the
material from one aggregate state to another, are based on the law of conservation of energy. Therefore, consideration
of only the geometric characteristics of structures cannot give an adequate understanding of the nature of their origin.

Thus, it is of interest to consider the possible interrelation between different energy constants used in the
models of heating and thermal destruction of the material and the Fibonacci number.

As shown in [3], solution of the linear heat-conduction equation for a half-space at the boundary conditions
of the first kind is self-similar. At Tw = const this solution has the form

θ∗
 = 

T
∗
 − T0

Tw − T0
 = erfc 





y

2 √aτ



 . (1)

The depth of the heated layer bounded by the isotherm with dimensionless temperature θ∗  obeys the relation

y C K √aτ  , (1′)
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where K is a coefficient characterizing the velocity of movement of different isotherms. Therefore, K depends on the
isotherm under consideration, i.e., on the value of θ∗ . Despite the fact that expression (1) involves the parameters y,
a, and τ, calculations made within the range of variation of thermal diffusivity by two orders showed that the coeffi-
cient K depends only on θ∗  and the law of variation of Tw [4]. In this case, the coefficient K reaches the highest
value for Tw = const.

Polezhaev and Yurevich [5] have shown that (1) must be used only up to the temperature of destruction
(melting) of the material surface Td, i.e., during time τd which under the constant thermal effect q = const is deter-
mined by the formula

τd = 
π

4
 λρc 

(Td − T0)2

q
2

 . (2)

From this instant of time thermal destruction of the surface begins, and the heat-conduction equation includes the rate
of mass entrainment determined from the corresponding boundary conditions.

However, as it turned out [6, 7], in the nonstationary mode of heating with mass entrainment we can also use
an expression similar to (1′), if it is presented in the form

∆∗
 = K √a  (√τ  − √τξ ) , (3)

i.e., the position of the isotherm T∗  is considered relative to the initial surface. It was found experimentally [7] that
for θ∗  < 0.2 satisfactory agreement between calculation and experiment is provided by relation (1) and for θ∗  > 0.2 it
is better to use the equation

K = − 
1

KTd

 θ∗
 + 

KTd

2

1 − KTd

 . (4)

At θ∗  = 1, expression (4) passes over to the third-degree equation

2KTd

3
 − KTd

2
 + KTd

 − 1 = 0 , (5)

whose solution gives a numerical value of the constant of thermal destruction KTd
 C 0.739.

Equation (4) formed the basis of the model of heating and thermal destruction of the material suggested in
[8]. However, in [7] only the real root of (5) was considered. At the same time, of no less interest are the complex
roots (x1,2 C −0.119 % i0.814), since the product of the real root (constant KTd

) by the double square of the modulus
2M2 of the root x1,2 by the Vieta theorem is just unity:

2M
2
 = 

1
KTd

 C 1.353 . (6)

According to [5], upon elapse of a rather large period of the time of heating, the quasistationary mode of
heating is established and the temperature profile acquires an exponential form:

θ (y) = 
T (y) − T0

T
__

w − T0

 = exp 




− 
V
__

∞

a
 y




 .

 
(7)

The model of thermal destruction of a material [8] that involves the constant KTd
 was improved in [9], where

it was shown that the stationary mode of mass entrainment from the surface of the material is established once a layer
equal to
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S (τv) = 
d0

KTd

2  C 1.831d0 (8)

is carried away from the surface. Here d0 depends virtually only on the thermal conductivity of the material [9, 10].
After entrainment of the layer S(τv) from the material surface, we can assume that the temperature profile for

the isotherms with a temperature close to T
__

w is stationary, since the velocity of these isotherms became equal to the
rate of entrainment. The model suggested proposes full coincidence of the current and stationary temperature profiles,
rather than gradual approximation, upon transition to the isotherm with a lower temperature [11].

Three conclusions that are of importance for this work follow from this model. First, the stationary mode of
heating and mass entrainment virtually for any isotherm that bounds the heated layer is established at the instant of
time when the thickness of the entrained layer differs from the depth of isotherm occurrence by no more than 10%;
therefore, with an accuracy to the constants d0 and τξ we can write

∆∗
 (τδ)

S (τδ)
 C 2 . (9)

Second, for the time of onset of destruction (melting) of the surface we obtained the formula

τd = 
KTd

6
a

4 (KTd

2
 + 1)2

 V
__

∞
 2 . (10)

Third, the equations for calculation of the depth of the heated layer (one following from (7) and another obtained on
the basis of the model of [8]) give virtually the same results [11].

Heat-protective materials are often compared by the dimensionless rate of mass entrainment G
__

Σ [5], which is
equal to the ratio of the rate of material destruction GΣ to the heat-transfer coefficient (α ⁄ cp)0. In [11] it is shown that
two modes of mass entrainment from the surface must be considered. At a dimensionless rate of mass entrainment
G
__

Σ ≤ 0.5, the rate of destruction is specified by the heat flux (rate of heating) even before the onset of surface destruc-
tion and does not depend on the state (solid, liquid, or gas) of the material in which it is carried away from the sur-
face. We can assume that under these conditions the determining role is played by inner processes of heat absorption
in the material. On the basis of Eqs. (2) and (10), we suggested a formula for estimation of the dimensionless rate of
entrainment, which allows for only the heat content of the material at the temperature of boiling [11]:

G
__

Σ C 
√π

1 − KTd

 
Ie − Iw

H (Tboil)
 C 

Ie − Iw

6.79H (Tboil)
 , (11)

where the denominator is double the maximum heat of physicochemical conversions on the surface 2(∆Qw)max.
When G

__
Σ > 0.5, the heat of physicochemical conversions, which includes the heat of evaporation, and the ef-

fect of injection rank first in heat balance on the surface of the destructing material. It was proved [12–14] that the
parameter of stabilization of mass entrainment that determines the dependence of dimensionless rate of evaporation
G
__

Σ on the square root of the enthalpy difference on the outer edge of the boundary layer, i.e., on supplied thermal
energy, is also equal to 2(∆Qw)max. Probably, the amount of heat, which in a dimensionless form is

2 (∆Qw)max

H (Tboil)
 = 

√π
1 − KTd

 C 6.79 , (12)

is the limiting value of thermal energy that must be spent for gasification and entrainment of a solid mass unit with
account for blocking of supplied heat by injection of the gasified material into the boundary layer and for radiation
from the surface. When G

__
Σ > 0.5, the equation for calculation of the dimensionless rate of evaporation obtained in [13]

has the form
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G
__

w C √ Ie − Iw

2 (∆Qw)max
 − 

H (Tboil)
(∆Qw)max

 . (13)

Since for many materials (∆Qw)max C ∆Qev, the heat of evaporation for most simple substances and SiO2 was
considered [11, 15] and it was proved that with an accuracy up to 7% the relation

(∆Qw)max C 
√π

2 (1 − KTd
)
 H (Tboil) C 3.395H (Tboil) (14)

holds. Then, the heat content of the gasified material (∆Qw)max + H(Tboil) in dimensionless form is

(∆Qw)max + H (Tboil)
H (Tboil)

 = 
√π

2 (1 − KTd
)
 + 1 C 4.395 . (15)

At present, on the basis of computational-experimental studies conducted in [12–14] and generalization [11], the de-
pendences (11)–(15) can be taken to be strictly proved.

Figure 1 presents the "energy diagram of the material" (EDM) constructed on the basis of Eqs. (1) and (4),
which determine the dependence of the coefficient K on dimensionless temperature θ∗ : (1) without mass entrainment
from the surface of the material at Tw = const and (4) with mass entrainment. Experimental results obtained in the
investigations of temperature fields in the specimens of heat-protective materials of different classes, including quartz-
glass ceramic [16], confirm the validity of Eq. (4), from which the value of the constant of thermal destruction KTd

 is
found. Moreover, from (4) a number of proportions that determine the constants (1.831, 2.381, 3.831, etc.) used in
Eqs. (8), (10), (11) and the EDM are obtained.

At the same time, Eq. (1), which characterizes the distribution of thermal energy in a solid body until the
onset of destruction (melting) of the surface (Fig. 1, curve 1), is obtained for Tw = const, and its use in other laws
that take place in heating of a solid body to the temperature of surface melting, can lead to some errors. However,
with account for the fact that the time of establishment of constant temperature of the surface is much smaller than

Fig. 1. Energy diagram of thermal destruction of the material. Variation of the
coefficient K in material heating to the temperature of surface destruction
(melting): 1) Tw = const, calculation by (1); 2) calculation by (4); 3) V

=
∞ C

0.32, calculation by (19); 4, 5, 6) at the moment of establishment of the sta-
tionary mode of heating [5, 6) experimental values: 5) θ∗  = 0.38; 6) 0.6]; val-
ues of the coefficient K at points C, B, E, R, and A — 0.739, 1.831, 2.092,
3.092, and 3.831, respectively.

524



the time of reaching stationary mass entrainment, this error can be neglected. At least, when θ∗  < 0.2, even with mass
entrainment from the surface, the experimental temperature fields are in good agreement with calculation by (1) [7].

In [17], it was shown that the law of surface temperature variation from the moment when the temperature of
melting Td was reached to the establishment of the constant T

__
w is determined by the constant KTd

. Integration of the
dependence that approximates experimental results (Fig. 2)

θTw
 = 

Tw − Td

T
__

w − Td

 = 1.480t
5
 − 5.061t

4
 + 7.377t

3
 − 6.379t

2
 + 3.581t + 9.690⋅10

−3
 , (16)

gives the value

 ∫ 

0

1

θTw
 dt = 0.742 C KTd

 .

Here t = (√ τ  − √τd )/(√τT  − √τd ).
It is of interest to note that within the temperature range from Td to T

__
w the law of surface temperature rise

is also described satisfactorily by the equation for a circle of unit radius

θTw
 C √ t (2 − t)  , (17)

and the number π is the coefficient of proportionality between the area on the energy diagram of the material and di-
mensionless energy (SBCD√π C KTd

).
As a result of accumulation of thermal energy in the surface layer of the material (the area SBCD on the en-

ergy diagram of the material), the value of the coefficient K at θ∗  = 1 reaches the value of KTd
 (Fig. 1, straight line

2). It is seen from Fig. 1 that, in this case, 1 and 2 intersect at point B (K = 0.831, θ∗  = 0.19). Experimental studies

Fig. 2. Dependence of a relative drop of temperatures θTw
 on dimensionless

time of heating in the molten layer of quartz-glass-based materials: 1, 5, 9)
convective heat flux qconv = 14,700 kW/m2, Pe = 3.5⋅105 Pa; 2, 6, 10) qconv
= 11,500 kW/m2; 3, 7, 11) qconv = 7650 kW/m2; 4, 8, 12) qconv = 5850
kW/m2 (all Pe D 105 Pa); 1–4) doped quartz-glass ceramic; 5–8) pure quartz-
glass ceramic; 9–12) quartz glass; I) calculation by (16), II) by (17).
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show that this point bounds the region of the temperature field to which the effect of the destructing surface propa-
gates at minimum heat content of the material sufficient for establishment of stationary entrainment of mass from the
surface (Fig. 3a). The linear dependence ∆∗  = f(√τ ) obtained for the isotherm θ∗  = 0.2 in quartz-glass ceramic has a
bend, whereas there is no bend for the isotherm θ∗  = 0.05. For high-temperature isotherms θ∗  ≈ 0.6 (Fig. 3b), the de-
pendences ∆∗  = f(√τ ) sharply change the angle of inclination on reaching a constant temperature of the surface, i.e.,
at the instant of termination of heat accumulation in the surface layer of the material.

In [8] it is shown that the law governing mass entrainment in the nonstationary mode is also determined by
the constant KTd

 and the stationary mode of destruction of the material surface is reached at the instant of time when
a layer of the material, whose thickness is determined by (8), will be entrained from the surface. A portion of the
thermal energy accumulated during increase in the temperature from Td and T

__
w (area SBCD), which causes the S-

shaped character of the temperature profile in the surface layer even of nontransparent material [17], is absorbed by
either the layer of the material entrained from the surface [determined according to (8)] or gaseous products of binder
decomposition, for example, in filtering through a porous coked layer. Another portion of this energy, which in dimen-
sionless form is 1 − KTd

 C 0.261, is accumulated in the stationary heated layer and is spent for inner processes, for ex-
ample, melting (Fig. 4).

To estimate the heat content of the heated layer we use an expression that follows from (7) and that is ob-
tained in [13]:

H (T
__

)

H (Tw)
 C 

4

K
2 




1 − exp 





− 
K

2

4








 . (18)

Since, according to (1), K → ∞ when θ∗  = 0, we bound the temperature field by the isotherm θ∗  = 0.005 for which
K C 3.831.

The choice of K C 3.831 is not random since this value is found in experimental studies of the temperature
fields in specimens of quartz-glass ceramic. An increase in the density of the supplied heat flux and, consequently, the
rate of mass entrainment leads to the fact that for G

__
Σ > 0.5 the stationary mode is established virtually for all iso-

therms of the temperature field, when their velocity becomes equal to the velocity of surface movement. With increase
in the rate of mass entrainment the path passed by the isotherms in the nonstationary mode of heating increases, i.e.,

Fig. 3. Dependence of the total thickness of the heated and entrained layers on
the time of heating of quartz-glass ceramic: a) θ∗  ≤ 0.2; 1–3) doped quartz-
glass ceramic; 4) pure quartz-glass ceramic [1) convective heat flux qconv =
4130; 2, 4) 7260; 3) 9350 KW/m2]; dots — experiment, curves — processing
by the least-squares method; b) θ∗  C 0.6; 1) V

=
∞ C 0.26; 2) 0.14; dots — ex-

perimental data on heating of doped quartz-glass ceramic to T∗  = 1800 K;
lower dashed line — calculation of K by Eq. (4), upper dashed line — by Eq.
(19).
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the coefficient K depends on the rate of heating. Two important conclusions follow from Fig. 1, where only the
bounding dependences K = f(θ∗ , V

=
∞)  (curves 2 and 3) which are determined by Eqs. (4) and (19) are given: first,

when θ∗  > 0.2 the dependences K = f(θ∗ , V
=

∞)  are close to linear, and at θ∗  = 1 they converge to a common point
where K = KTd

; second, at a dimensionless rate of entrainment V
=

∞  = V
__

∞/√aτξ  < 0.05 (where τξ = 1 sec), the velocity
virtually does not influence the value of K and its value for θ∗  > 0.2 is determined by (4). Equation (4) also holds at
higher rates of surface destruction V

__
∞ if inner sources of gas generation are present in the material and the rate of lin-

ear entrainment changes according to dependence 2 (Fig. 4). The approach of V
=

∞ to a limiting value of D0.3 leads to
a sharp decrease in the time of existence of linear dependences ∆∗  = f(√τ ) (see Fig. 3b). When V

=
∞ C 0.3, the nonsta-

tionary period for θ∗  > 0.2 can be neglected, and the coefficient K attains maximum values and is described by the ex-
pression

K = − 








1 − KTd
 + KTd

2

1 − KTd







 θ∗

 + 
1

1 − KTd

 , (19)

which at K = KTd
, in contrast to (4), is generated. The equation of the straight line (19) at θ∗  = 0 gives K C 3.831.

This amount of heat in dimensionless form is characterized by the total area on the energy diagram of the material
(see Fig. 1). The product SOAFD√π  C 6.79 is equal to the total thermal energy necessary for gasification and entrain-
ment of a mass unit with account for blocking of supplied heat by injection into the boundary layer and radiation
from the surface (12).

From Eq. (18) at K C 3.831 we find that the heat content of the heated layer is D0.265 of the heat content
of the entrained material, which, according to Fig. 4, is of about (1 − KTd

). Since the surface temperature can greatly
exceed the temperature of material melting (for example, for quartz-glass ceramic by more than 1000 K), the heat con-
tent calculated by (18) must also include the heat of melting ∆Qmelt. Therefore, estimating the heat content of the solid
phase [H(T

__
)]sol, we must subtract the heat of melting which must be included in the heat content of the material being

entrained. The heat of melting of silicon dioxide is D160 kJ/kg, which is D0.07 of the heat content of molten silicon
dioxide at a temperature of 1996 K [18].

At a dimensionless rate of mass entrainment G
__

Σ > 0.5 and stagnation enthalpy of the oncoming gas flow
higher than 20,000 kJ/kg, destruction of the material surface begins virtually immediately in the stationary mode and
almost the whole of the entrained material is gasified. In this case, the total amount of heat necessary for gasification
of a material unit is written as follows:

2 (∆Qw)max = 


([H (T

__
)]sol + ∆Qmelt)liq + (∆Qw)max



 gas

 + ∆Qout . (20)

Fig. 4. Dependence of dimensionless linear entrainment S(t′)/S(tv) on the time
of heating: 1) without a source of inner gas formation (without cooling of the
heated layer); 2) in cooling of the heated layer due to filtration of gaseous
products.
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Hence it is seen that the components of heat balance (20) can conventionally be divided into two groups of heat-ab-
sorption factors. Although the heat of melting ∆Qmelt and heat of physicochemical conversions on the surface
(∆Qw)max, which includes the heat of evaporation, simultaneously compose a substantial part of the heat balance, they
are spent in changing of the aggregate state of the material and, without variation of its form, they cannot be consid-
ered as active processes of the heat absorption. At the same time, the heat content of the heated layer [H(T

__
)]sol, which

is D0.2 of the heat content of the material being entrained from the surface in the liquid or solid state, and the value
of ∆Qout, which exceeds this value by an order, must be referred to the factors that directly protect the form of the
material from thermal destruction.

The relative value of heat content of the heated layer (0.265) calculated by (18) can be presented as
(1 − KTd

) C 0.261 (Fig. 4), and the heat spent for breaking the bonds in melting (for quartz-glass ceramic 0.07) is al-
most equal to the difference between the real root of Eq. (5) and the square of the modulus of its roots x1,2 (0.062).
Then,

[H (T)]sol

H (Tw)
 = (1 − KTd

) − (KTd
 − M

2) C 0.261 − 0.062 = 0.199 . (21)

The amount of energy spent for blocking of supplied heat in injection of gaseous products into the boundary
layer (plus radiation) is the difference between the total energy of thermal destruction of the material (12) and the heat
content of the gasified material (15):

∆Qout

H (Tboil)
 = 

√π
1 − KTd

 − 




√π
2 (1 − KTd

)
 + 1




 = 

√π
2 (1 − KTd

)
 − 1 C 2.395 . (22)

Using expressions (12), (15), (21), and (22), we obtain the classical "golden proportion" between thermal en-
ergies of material destruction, which indicates that the integer relates to the higher as the higher relates to the smaller:

2 (∆Qw)max

[(∆Qw)max + H (Tboil)] − [H (T
__

)]sol

 = 
[(∆Qw)max + H (Tboil)] − [H (T

__
)]sol

∆Qout + [H (T
__

)]sol

 C 1.618 . (23)

The ratio of the total energy of thermal destruction of the material to the amount of heat carried away by the
products of its destruction is equal to the ratio of this amount of heat to the sum of the thermal energies (injection,
radiation, and heat content of the heated layer minus the heat of melting) spent for protection of the form of the ma-
terial from thermal destruction and satisfies the "golden proportion."

As is found in [11], at a dimensionless rate of entrainment G
__

Σ ≤ 0.5 the rate of material surface destruction is
determined by inner processes of heat absorption and does not depend on the form (solid, liquid, or gas) in which the
material is carried away from the surface. The amount of heat that is necessary for establishment of the stationary
mode of mass entrainment can be estimated by the energy diagram of the material.

It is seen from Fig. 1 that the minimum amount of heat sufficient for reaching the stationary mode can be
proportional to the area SOABCD = SOEBCD + SEAB, with the area SOEBCD = M2 + KTd

 C 1.416. Graphical integration
up to KTd

 C 3.831 gives a value of the area SEAB C 0.095. Since the energy diagram of the material characterizes the
state of the material after reaching the temperature of melting, the considered thermal energy must, probably, include
the latent heat of melting as well. As follows from (23), its value can be taken equal to D0.062, which after division
by √π  gives a value of 0.035. Then, the minimum amount of heat that must be absorbed by the material for estab-
lishment of the stationary mode of mass entrainment in dimensionless form is

(1.416 + 0.095 + 0.035) √π C 2.74 . (24)

The amount of heat (D2.74) absorbed by the material in increase of the surface temperature from T0 to T
__

w
provides establishment of the stationary mode of heating and destruction of the material surface. We can expect that
redistribution of precisely this amount of thermal energy can, in the long run, provide the exponential temperature pro-
file (7) (Fig. 5a). It should be noted that this amount of heat exceeds by an order the heat content of the stationary
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heated layer (D0.2), since in establishing the stationary mode of heating a large part of the thermal energy is absorbed
by the material carried away in solid, liquid, and gaseous states.

In order to show that an amount of heat equal to D2.74 suffices for establishment of the exponential (station-
ary) temperature profile in the material and to compare its value with the distribution of thermal energy on the energy
diagram of the material, it is necessary to present this thermal energy as some area on the energy diagram of the ma-
terial, allowing for the fact that for such a profile the coefficient K of the surface is zero. However, curves 1 and 2
on the energy diagram of the material describe the nonstationary mode of heating and entrainment of mass and the
exponential temperature profile no longer depends on time. This problem can be solved if comparison of the two pro-
files is made at the instant of equality of the thicknesses of the heated and entrained layers, when the stationary mode
of heating is established for the isotherm bounding the heated layer. The coefficient K calculated for this instant of
time characterizes the thermal energy of the isotherm bounding the heated layer. To determine the coefficient K at the
instant of time tδ, when the velocity of the isotherm Vθ∗  = V

__
∞, we differentiate (3) with respect to τ and obtain

K = √4V
__

∞
 2τδ
a

 . (25)

It is seen from Fig. 5a that the calculated curve 2 (exponential profile) at a = 0.6⋅10−6 m2/sec deviates from
the experimental curve starting from a temperature of 1100 K, which corresponds to the isotherm θ∗  = 0.38 lying at
a distance of 10.3⋅10−3 m from the initial surface. At this instant of time (at the 50th second of heating), the thickness
of the entrained layer is 5.1⋅10−3 m, i.e., the stationary mode of heating for this isotherm is established virtually at the
instant of equality of the thicknesses of the heated and entrained layers. One more point that characterizes the moment
of establishment of the stationary mode for the isotherm θ∗  = 0.6 can be determined by the experimental data obtained
on the specimens of doped quartz-glass ceramic for which a = 0.65⋅10−6 m2/sec (Fig. 5b). Finally, the third point is
obtained from the fact that for the exponential profile as well as for the nonstationary profile (1) the coefficient K of
the surface isotherm is zero. In Fig. 1 (points 5 and 6) it is shown that experimental values of the coefficient K cal-
culated by (25) are in good agreement with curve 4, i.e., the thermal energy necessary for establishment of the station-

Fig. 5. Determination of the moment of establishment of the stationary mode
of heating: a) according to thermocouple measurements, θ∗  = 0.38, τ = 50 sec
(qconv = 7260 kW/m2, Tw = 2390 K, V

__
∞ = 0.11⋅10−3 m/sec; 1) experiment; 2)

stationary temperature profile, calculation by (7); 3) position of the heated sur-
face at the 50th second of heating; b) according to the heated layer to T∗  =
1800 K in doped quartz-glass ceramic, θ∗  = 0.6 (qconv = 7650 kW/m2, Ie =
8600 kJ/kg, V

__
∞ = 0.1⋅10−3 m/sec); dots — experiment. T, K; y, m; S(τ), m;

δ(τ), m; τ, sec.
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ary temperature profile can be presented by the area on the energy diagram of the material SORD = 1 + KTd
2 , the value

of which is also equal to 2.74 (1.546√π ).
The relations between dimensionless energies characterizing thermal destruction of a material that satisfy the

"golden proportion" are obtained on the basis of the constant of thermal destruction KTd
. In our opinion, the series of

works generalized in [11] substantiate its fundamental importance adequately.
We consider to which natural properties of the material could such a constant be related. By the data of dif-

ferent authors, for example, [19], oxygen and silicon are the most widespread elements in the Earth’s crust (O D 50%,
Si D 25–30%). Clearly, materials based on SiO2 have gained the widest acceptance. In Table 1, values of the ratio of
heat capacities of silicon dioxide in the liquid and gaseous states and the heat content of SiO2 within the range of
temperatures from Td to Tboil at atmospheric pressure are presented.

As is seen from the table, the ratio of heat capacities of SiO2 in the gaseous and liquid states is in rather sat-
isfactory agreement with the constant of thermal destruction KTd

 C 0.739. Using the data of the table, we can deter-
mine the heat of melting of silicon dioxide at Td = 1996 K (D9.6 kJ/mole), the value of which in dimensionless form
[∆Qmelt/H(Tmelt) = 0.07] was used in obtaining relation (23). It should be noted that the ratio of molecular weights of
SiO (44.0849) and SiO2 is also close to the value of KTd

 and is equal to 0.734.

NOTATION

a, thermal diffusivity, m2/sec; c, heat capacity, kJ/(kg⋅K); cp
gas and cp

liq, heat capacity of the material in the
gaseous and liquid states, J/(K⋅mole); d0, parameter of nonstationary mass entrainment that specifies displacement of
the straight line of entrainment relative to the origin of coordinates, m; G

__
w, dimensionless rate of evaporation; GΣ, rate

of mass entrainment, kg/m2; G
__

Σ, dimensionless rate of mass entrainment; H(T
__

), heat content of the heated layer, kJ/kg;
[H(T

__
)]sol, heat content of the heated layer without heat of melting, kJ/kg; H(Tw) and H(Tboil), heat content of the ma-

terial at the surface temperature and the temperature of boiling, kJ/kg; Ie, stagnation enthalpy, kJ/kg; Iw, enthalpy of
the gas at the temperature of the hot surface, kJ/kg; K, coefficient characterizing velocity of isotherm movement; KTd

, con-
stant of thermal destruction; M, modulus of the roots of Eq. (5); Pe, stagnation pressure, Pa; q, heat flux, kW/m2;
qconv, convective heat flux to the cold surface, kW/m2; S(τ), S(τv), and S(τδ), linear entrainment and its values at the
moment of reaching stationary values of the rate of entrainment and thickness of the heated layer, m; S(t′) and S(tv),
dimensionless linear entrainment and its value at the moment of establishment of the stationary rate of entrainment; t
= (√τ  − √τd )/(√τT  − √τd ), dimensionless time of heating for the dependence θTw

 = f(t); t′ = (τ − τd)/(τv − τd), dimen-
sionless time of heating for the dependence S(t′)/S(tv) = f(t′); tv, dimensionless time of reaching the stationary rate of

TABLE 1. Ratio of Heat Capacities of Silicon Dioxide in the Gaseous and Liquid States within the Range from Melting
Temperature to Boiling Temperature at Atmospheric Pressure [18]

Silicon dioxide in the condensed state, 
mol. weight 60.0843

Silicon dioxide in the gaseous state, 
mol. weight 60.0843 cp

gas/cp
liq

T, K cp
liq, J/(K⋅mole) ∆H(T), kJ/mole T, K cp

gas, J/(K⋅mole) ∆H(T), kJ/mole

1996 75.403 126.836 – – – –
1996 83.500 136.436 – – – –
2000 83.500 136.770 2000 61.308 108.503 0.734
2100 83.500 145.120 2100 61.403 114.638 0.735
2200 83.500 153.470 2200 61.485 120.783 0.736
2300 83.500 161.820 2300 61.557 126.435 0.737
2400 83.500 170.170 2400 61.661 133.094 0.738
2500 83.500 178.520 2500 61.678 139.255 0.739
2600 83.500 186.870 2600 61.728 145.423 0.739
2700 83.500 195.220 2700 61.773 151.604 0.740
2800 83.500 203.570 2800 61.813 157.784 0.740
2900 83.500 211.920 2900 61.849 163.963 0.741
3000 83.500 230.270 3000 61.882 170.153 0.741
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entrainment; T0, temperature of nonheated material, K; Tw and T
__

w, temperature of the heated surface and its stationary
value, K; T∗ , temperature of the isotherm, K; T

__
, integral-mean temperature of the heated layer, K; T(y), current value

of temperature along the coordinate, K; Td, temperature of destruction (melting) of the material surface, K; Tboil, tem-
perature of boiling, K; Vθ∗ , velocity of the isotherm, m/sec; V

__
∞, stationary value of the rate of linear entrainment,

m/sec; V
=

∞ , dimensionless stationary rate of linear entrainment; x1,2, complex roots of Eq. (5); y, coordinate, m;
(α ⁄ cp)0, heat-transfer coefficient, kg/(m2⋅sec); δ(τ) and δT, depth of the heated layer and its stationary value, m;
∆H(T), heat content of silicon dioxide, kJ/mole; ∆Qmelt and ∆Qev, heat of melting and evaporation, kJ/kg; (∆Qw)max,
maximum value of heat of physicochemical conversions on the surface, kJ/kg; ∆Qout, heat absorbed due to injection
into the boundary layer and radiation from the surface, kJ/kg; ∆∗  and ∆∗ (τδ), total thickness of the entrained and
heated layers to the isotherm T∗  and its value at the moment of establishment of the stationary mode of heating, m;
θ∗  = (T∗  − T0)/(Tw − T0), dimensionless temperature of the isotherm; θTw

, dimensionless value of the surface tempera-
ture in its variation from Td to T

__
w; θ(y), current value of dimensionless temperature; ϕ, Fibonacci number; λ, thermal

conductivity, W/(m⋅K); ρ, density, kg/m3; τ, current time of heating, sec; τT, τv, and τδ, times of establishment of sta-
tionary values of the surface temperature, rate of mass entrainment, and thickness of the heated layer, sec; τξ, section
cut off by the linear dependence ∆∗  = f(√τ ) on the abscissa axis (τξ = 1 sec); τd, time of the onset of destruction
(melting) of the surface, sec. Indices: 0, nonheated material, impermeable surface; e, outer edge of the boundary layer;
p, pressure; T, temperature; v, velocity; w, wall conditions; Σ, total; δ, heated layer; out, outer; gas, gaseous; liq, liq-
uid; ev, evaporation; conv, convective; boil, boiling; melt, melting; d, destruction; sol, solid; ∞, infinity.
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